OFFICE OF NAVAL RESEARCH Contract N00014-76-C-0408 Project NR 092-555 Technical Report No. 10 EFFECT OF INTERFACIAL BONDING ON THE STRENGTH OF ADHESION OF ELASTOMERS II. DISSIMILAR ADHERENDS by R.-J. Chang and A. N. Gent Institute of Polymer Science The University of Akron Akron, Ohio 44325 DTIC ECTE FEBO 9 1381 E February, 1981 Reproduction in whole or in part is permitted for any purpose of the United States Government Approved for Public Release; Distribution Unlimited BC. FILE COPY | Effect of Interfacial Bonding on the Strength of Adhesion of Elastomers II. Dissimilar Adherends. 7. AUTHOR(*) RJ./Chang and A. N./Gent 9. PERFORMING ORGANIZATION NAME AND ADDRESS Institute of Polymer Science | TYPE OF REPORTA PERIOR COVERED Technical Report Technical Report NØ0014-76-C-0408 CONTRACT OR GRANT NOWSER(*) NR 092-555 | | | |---|---|--|--| | Effect of Interfacial Bonding on the Strength of Adhesion of Elastomers II. Dissimilar Adherends. 7. Author(a) RJ./Chang and A. N./Gent 9. Performing organization name and address Institute of Polymer Science | Technical Report Number N00014-76-C-0408 | | | | Effect of Interfacial Bonding on the Strength of Adhesion of Elastomers II. Dissimilar Adherends. 7. Author(a) RJ./Chang and A. N./Gent 9. Performing organization name and address Institute of Polymer Science | Technical Report Number N00014-76-C-0408 | | | | Strength of Adhesion of Elastomers II. Dissimilar Adherends 7. AUTHOR(*) RJ./Chang and A. N./Gent PERFORMING ORGANIZATION NAME AND ADDRESS Institute of Polymer Science | PERPORMING ONG. REPORT HUMBER NØ0014-76-C-0408 CONTRACT OR GRANT HUMBER(*) | | | | II. Dissimilar Adherends. 7. AUTHOR(s) RJ./Chang and A. N./Gent 9. PERFORMING ORGANIZATION NAME AND ADDRESS Institute of Polymer Science | NØ0014-76-C-0408 | | | | RJ./Chang and A. N./Gent PERFORMING ORGANIZATION NAME AND ADDRESS Institute of Polymer Science | . CONTRACT OR GHANT HOMBER(s) | | | | RJ./Chang and A. N./Gent Performing organization name and address Institute of Polymer Science | | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS Institute of Polymer Science | NR 092-555 | | | | Institute of Polymer Science | | | | | Institute of Polymer Science | 10 BOOCHAN EL PINEUE BOOLECE BARY | | | | | 10. PROGRAM ÉLÉMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | | | | | | | The University of Akron | | | | | Akron, Ohio 44325 | | | | | Office of Naval Research | February 2 1981 | | | | - 1 CAL | IS: NUMBER OF PAGES | | | | 1 | 15 | | | | Arlington, Virginia 22217 14. MONITORING AGENCY NAME & ADDRESS(II dillorent trees Controlling Office) 1 | IS. SECURITY CLASS. (of this report) | | | | | Unclassified | | | | <u> </u> | SA. DECLASSIFICATION/DOWNGRADING | | | | | SCHEDULE | | | | 16. DISTRIBUTION STATEMENT (of this Report) | | | | | Approved for public release; distribution | unlimited | | | | 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 29, if different from i | Report) | | | | 18. SUPPLEMENTARY NOTES | | | | | Submitted for publication in: Journal of Polymer Science:
Polymer Physics Edition | | | | | 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) | | | | | Adhesion, Bonding, Crosslinking, Elasto ers, Fracture,
Interface, Strength | | | | | | | | | | 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) | | | | | | r in initial degree of | | | DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE A SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered sheet of the same elastomer and the crosslinking then taken to completion, the strength of adhesion under threshold conditions was found to be qualitatively in accord with the predictions of a simple theoretical treatment for the degree of interlinking in terms of the corresponding homogeneous crosslinking reaction. Whereas the theory suggests that the effective degree of interlinking will be one-half of that generated in a homogeneous system, the experimental results were in accord with a figure of about 70 per cent. When a layer of one elastomer was bonded to a layer of the other in a similar way, the strength of adhesion was found to be relatively high when the initial fully-crosslinked layer was BR and relatively low when it was EPR. These results were also in qualitative agreement with theoretical predictions for the degree of chemical interlinking developed between layers differing in chemical reactivity. Thus a general correlation appears to hold between the threshold strength of adhesion and the amount of interlinking. S/N 0102- LF- 014-6601 #### Introduction A previous study was concerned with the selfadhesion of elastomer layers bonded together by covalent crosslinks (1). Two identical partially-crosslinked elastomer sheets were brought together and chemically interlinked by taking the crosslinking process to completion. The degree of interlinking was inferred from the increase in crosslink density of the two layers during the second stage of crosslinking, carried out while the layers were in intimate contact. For these symmetrical specimens a direct proportionality was found to hold between the threshold strength of adhesion, i.e., the work of separation per unit of interfacial area measured at low rates of separation and at high temperatures, and the inferred degree of interfacial interlinking. Experiments have now been carried out on unsymmetrical specimens, in which the two elastomer layers to be bonded together differ either in initial degree of crosslinking or in chemical reactivity. The results are reported here and compared with those obtained previously for symmetrical specimens prepared from the same elastomers. #### Experimental Details Two types of unsymmetrical joint were prepared. The first consisted of a fully-crosslinked sheet of one elastomer bonded to a partially-crosslinked sheet of the same elastomer by pressing them together and completing the crosslinking process. This procedure is shown schematically in Figure 1a. A method for estimating the amount of interlinking of the two sheets is outlined in the following section of the paper. The second type of unsymmetrical joint is shown schematically in Figure 1b. In this case different elastomers were employed for the two sheets. Thus, a fully crosslinked sheet of one elastomer; for example, polybutadiene (BR); was bonded to a partially-crosslinked sheet of another elastomer; for example, an ethylene-propylene copolymer (EPR); by pressing them together and completing the crosslinking process. Again, a method for estimating the amount of interlinking developed is presented in the following section. The elastomers used for preparing test samples were the same as before: an anionically-polymerized polybutadiene (Diene 35 NFA, Firestone Rubber and Latex Company), and an ethylene-propylene copolymer (Vistalon 404, EXXON Chemical Company). They were crosslinked with a free-radical crosslinking agent, dicumyl peroxide, using recipes given previously (1). Flat sheets, about 0.5 mm thick, were prepared by heating for a time t₁ in a heated press at 150°C. The initial degree of crosslinking depended upon the time t₁. It was determined by measuring the equilibrium degree of swelling of the partially-crosslinked sheets in n-heptane (BR) or in benzene (EPR), as described before (1). It was characterized by the number \underline{v} of molecular network strands per unit volume, calculated by means of the Flory-Huggins relationship (2). Peeling experiments were employed to determine the work G_a of separation per unit area of bonded interface. These measurements were made at a relatively high temperature, $100\,^{\circ}$ C, and at a low rate of peel, 0.4 μ m/s so that the values obtained will be close to the threshold strengths of adhesion when contributions from viscoelastic effects in the peeling layers are absent (1). They have been taken here as the threshold strengths G_a . Estimation of the amount of interfacial bonding ## (i) Different degrees of initial crosslinking. Let us assume that one layer has been crosslinked in fully, so that all of the crosslinking agent with, it has been used up. The corresponding density of network strands is denoted $v_{\underline{f}}$. The other layer has been partially crosslinked initially and has a strand density of $v_{\underline{f}}$ before the two layers are brought into contact. It is now assumed that some diffusion of the unreacted crosslinking agent takes place while the two sheets are being crosslinked in contact. As a result of this diffusion, initially the contacting region of the fully-crosslinked layer undergoes additional crosslinking by an amount v_e , so that it reaches a final degree of crosslinking of $v_f + v_e$. Meanwhile the other layer will crosslink to a lesser extent than it would have otherwise done, because of the loss of crosslinking agent. It will, therefore, reach a final level of crosslinking of $\frac{v_f}{v_f} - \frac{v_e}{v_e}$ in the region near the interface. Thus, the interface will separate two regions of elastomer that were initially crosslinked to levels v_f and v_f , and are ultimately crosslinked to levels $v_f + v_e$ and $v_f - v_e$. They have, therefore, undergone different amounts of additional crosslinking whilst in contact; v_e and $v_f - v_f - v_e$, respectively. The degree of interlinking of the two layers is best represented by the mean of these two values, i.e., by the average extent of additional crosslinking in the two contacting layers. Thus, $$\overline{\Delta v} = (v_f - v_1)/2. \tag{1}$$ It should be noted that this is one-half of the interlinking developed in a symmetrical system in which each elastomer layer is initially crosslinked to a level $\frac{v}{1}$. (ii) Different elastomer layers. Again, it is assumed that one layer has been fully cross-linked initially. The initial levels of crosslinking are thus represented by v_{f_2} , corresponding to the equilibrium value of \underline{v} for elastomer 2, and \underline{v} , the initial value for elastomer 1. As a result of diffusion of the crosslinking agent from the first layer into the second during the interlinking stage, the final level of crosslinking attained by elastomer 1 will be lower than if it were crosslinked alone. It is denoted $v_{f_1} - v_e$, where v_e denotes the density of network chains that are lost to elastomer 1 in the vicinity of the interface because of migration of crosslinking agent into elastomer 2. In the present instance it is necessary to take into account possible differences in efficiency of crosslinking of the two elastomers. The amount of crosslinking agent that creates $\nu_{\rm e}$ crosslinks in elastomer 1 will create a different number, say α $\nu_{\rm e}$ crosslinks, in elastomer 2, where α denotes the relative efficiency of crosslinking in elastomer 2 compared to elastomer 1. Then the final level of crosslinking for elastomer 2 becomes $\nu_{\rm f_2}$ + $\alpha\nu_{\rm e}$. The two layers have undergone the following changes in crosslinking whilst in contact: $v_{f_1} - v_1 - v_e$ and av_e . The mean value av_e is, therefore, given by $\frac{\partial v_e}{\partial v_e} = (v_{f_1} - v_1) + (a-1)v_e. \tag{2}$ provides an estimate of the degree of interlinking. It can be greater or less than the amount of interlinking developed with layers of the same elastomer, given by equation (1), depending upon the value of $(\underline{\alpha} - \underline{1})$. If $\underline{\alpha}$ is greater than 1, then the degree of interlinking is enhanced, whereas, if $\underline{\alpha}$ is less than 1, the degree of interlinking is reduced, in comparison with layers of the same elastomer subjected to the same bonding conditions. The efficiencies of crosslinking for BR and EPR are apparently quite different. We note that whereas about 0.1 - 0.2 per cent of dicumyl peroxide is sufficient to crosslink BR adequately, 2.7 per cent is required to crosslink EPR to a similar degree. Thus, if a layer of BR represents elastomer 1, i.e., is fully-crosslinked initially, and EPR represents elastomer 2, then the parameter α may be estimated to be in the range 13 - 27, much greater than unity. On the other hand, if an EPR layer is fully-crosslinked initially, and is then bonded to a partiallycrosslinked layer of BR, then the corresponding value of α becomes 1/13 - 1/27, much smaller than unity. In the former case a higher degree of interlinking would be expected from equation (2), and in the latter case a much lower degree of interlinking, than for layers of the same elastomer. These conclusions have been examined experimentally, as described in the following section. ### Measurements of the strength of adhesion (i) Bonding a partially-crosslinked BR layer to a fully-crosslinked BR layer. Experimentally-determined values of the work $\underline{G}_{\underline{o}}$ of separation per unit area of bonded interface, are plotted in Figure 2 against the degree of interlinking $\Delta v = v_{f} - v_{1}$ that would have occurred in a symmetrical system of two partially-crosslinked BR layers. Experimental results obtained previously with symmetrical specimens are plotted as a full line in Figure 2 for comparison. The present values for G_{0} , represented by open circles in the figure, are seen to be approximately proportional to Δv but considerably smaller than before, corresponding to degrees of interlinking of about 70% of Δv . Equation (1) predicts that the effective interlinking would be 50% of Δv . Thus, the experimentally-measured strengths of adhesion are qualitatively in accord with the theoretical predictions, but somewhat higher than expected. (ii) Bonding a partially-crosslinked EPR layer to a Similar experiments were carried out with EPR layers. The results for $G_{\underline{O}}$ are represented in Figure 3 by open circles. They are compared there with results obtained previously for symmetrical EPR specimens. Again, values of the work $G_{\underline{O}}$ of separation are roughly proportional to the degree of interlinking $\underline{\Delta v}$ for corresponding symmetrical specimens, but smaller, as if the actual interlinking was only about 70% of $\underline{\Delta v}$. Thus, as for BR layers, the experimental results for $G_{\underline{O}}$ are qualitatively in accord with the simple theory given in section 3 but somewhat larger. fully-crosslinked EPR layer. (iii) Bonding an EPR layer to a BR layer, and vice versa. Experiments were first carried out with fullycrosslinked sheets of EPR that were pressed into contact with partially-crosslinked sheets of BR and then the crosslinking was taken to completion. Measured values of the detachment energy $\mathbf{G}_{_{\mbox{\scriptsize O}}}$ are plotted as triangles in Figure 2 against the degree of interlinking Δv that would have occurred using two partially-crosslinked sheets of The strength of adhesion increased linearly with the degree of interlinking Av but at any level of interlinking the values of $G_{\mathcal{O}}$ were much smaller than for a symmetrical testpiece with two BR layers. They corresponded roughly to levels of interlinking of only about 40% of Av, or about one-half of the value of Δv inferred when a BR layer was bonded to a fully-crosslinked BR layer. In the EPR/BR system the parameter α , representing the relative efficiencies of crosslinking in EPR and BR, is quite small, certainly less than unity and probably less than 0.1. Equation (2) then predicts a low level of interlinking in comparison with the two BR layers. Thus, the experimental results are in good qualitative agreement with theoretical predictions. When a partially-crosslinked layer of EPR was joined to a fully-crosslinked layer of BR by completing the crosslinking reaction with the two layers in contact, then the strength of adhesion was found to be relatively high. Values of G_{o} are plotted in Figure 3 against the degree of interlinking that would have occurred with two partially-crosslinked EPR layers. The present experimental results, represented by triangles, are seen to be quite close to the linear relation obtained previously for symmetrical specimens made by joining two partially-crosslinked EPR layers. Thus, the degree of chemical interlinking may be inferred to be similar also. This high level of interlinking is also consistent with equation (2), recognizing that the parameter α , denoting the relative crosslinking efficiencies of the two elastomers, is now much greater than unity. In both cases, therefore, the measured strengths of adhesion for dissimilar elastomers are in good qualitative agreement with the predictions of a simple theory for the degree of chemical interlinking. The threshold strength appears to be directly proportional to the degree of interlinking. #### Discussion and conclusions The experimental systems used in this work represent models for the covulcanization of incompatible elastomers, either in the form of compounds when the elastomers are mixed together in a finely-divided state, or in structures where two elastomer layers are plied together (as in tire manufacture). They might also be regarded as general models of thermosetting adhesives when some reaction takes place across the interface during gelation or setting. In all of the cases studied, whether the layers to be joined together consisted of the same elastomer crosslinked to different degrees or of different elastomers with different reactivity, a general proportionality appears to hold between the mechanical strength of the joint, determined under threshold conditions, and the amount of chemical interlinking existing between the adhering layers. For the simple systems examined here, a method has been proposed for estimating the degree of interlinking from the course of the homogeneous crosslinking or gelation process within an isolated layer. This theory appears to be qualitatively correct, predicting the overall character of the results and the approximate magnitudes. Indeed, in view of the approximations made in developing the theory, the general level of agreement for widelydifferent systems can be regarded as quite satisfactory. ## References - 1. R.J. Chang and A.N. Gent, preceding paper. - 2. L.R.G. Treloar, "The Physics of Rubberlike Elasticity" 2nd. ed., Oxford University Press, London, 1968, p. 136. ### Figure Legends - Figure 1. Examples of interlinking reactions between dissimilar adherends. - (a) A partially-crosslinked sheet of EPR is crosslinked to completion in contact with a fully-crosslinked sheet of EPR. - (b) A partially-crosslinked sheet of EPR is crosslinked to completion in contact with a fully-crosslinked sheet of BR. - Figure 2. Detachment energy G for partially-crosslinked BR layers subsequently interlinked: - (a) to each other (full curve, taken from reference 1), - (b) to fully-crosslinked BR layers (0), - (c) to fully-crosslinked EPR layers (Δ). - Figure 3. Detachment energy G for partially-crosslinked EPR layers subsequently interlinked: - (a) to each other (full curve, taken from reference 1), - (b) to fully-crosslinked EPR layers (0), - (c) to fully-crosslinked BR layers (Δ). FIGURE 2 # ENERGETIC MATERIALS RESEARCH ## DISTRIBUTION LIST | | | • | | |--|------------|--|------------| | | No. Copies | | No. Copies | | Assistant Secretary of the Navy (R, E, and S) Attn: Dr. R.E. Reichenbach | 1 | AFATL
Eglin AFB, FL 32542
Attn: Dr. Otto K. Heiney | 1 | | Room 5E787
Pentagon
Washington, DC 20350 | | AFRPL
Code PACC
Edwards AFB, CA 93523 | 1 . | | Office of Naval Research
Code 473 | 10 | Attn: Mr. W. C. Andrepont | • . | | Arlington, VA 22217
Attn: Dr. R. Miller | | AFRPL
Code CA
Edwards AFB, CA 93523 | 1. | | Office of Naval Research
Code 200B | 1 | Attn: Dr. R. R. Weiss | | | Arlington, VA 22217
Attn: Dr. J. Enig | | Code AFRPL MKPA
Edwards AFB, CA 93523
Attn: Mr. R. Geisler | 1 . | | Office of Naval Research
Code 260
Arlingon, VA 22217 | 1 | Code AFRPL MKPA Edwards AFB, CA 93523 | 1 | | Attn: Mr. D. Siegel | _ | Attn: Dr. F. Roberto | | | Office of Naval Research Western Office 1030 East Green Street Pasadena, CA 91106 Attn: Dr. T. Hall | 1 | AFSC
Andrews AFB, Code DLFP
Washington, DC 20334
Attn: Mr. Richard Smith | 1 | | Office of Naval Research Eastern Central Regional Office 495 Summer Street Boston, MA 02210 | 2 | Air Force Office of Scientific Research Directorate of Chemical & Atmospheric Sciences Bolling Air Force Base Washington, DC 20332 | 1 | | Attn: Dr. L. Peebles
Dr. A. Wood | | Air Force Office of Scientific Research | 1 | | Office of Naval Research
San Francisco Area Office
One Hallidie Plaza Suite 601
San Francisco, CA 94102
Attn: Dr. P. A. Miller | 1 | Directorate of Aero-
space Sciences
Bolling Air Force Base
Washington, DC 20332
Attn: Dr. L. H. Caveny | | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | 12 | Anal-Syn Lab Inc.
P.O. Box 547
Paoli, PA 19301
Attn: Dr. V. J. Keenan | | | • | No. Copies | | No. Copies | |--|------------|---|------------| | Army Ballistic Research Labs
Code DRDAR-BLP
Aberdeen Proving Ground, MD
21005 | 1 | Hercules Inc. Eglin
AFATL/DLDL
Eglin AFB, FL 32542
Attn: Dr. Ronald L. Simmons | 1 | | Attn: Mr. L. A. Watermeier Army Ballistic Research Labs ARRADCOM Code DRDAR-BLP Aberdeen Proving Ground, MD 21005 | 1 | Hercules Inc. Magna Bacchus Works P.O. Box 98 Magna, UT 84044 Attn: Mr. E. H. DeButts | 1 | | Attn: Dr. Ingo W. May Army Ballistic Research Labs ARRADCOM Code DRDAR-BLT | 1 | Hercules Inc. Magna
Bacchus Works
P.O. Box 98
Magna, UT 84044
Attn: Dr. James H. Thacher | 1 . | | Aberdeen Proving Ground, MD 21005 Attn: Dr. Philip Howe Army Missile Command Code DRSME-RK Redstone Arsenal, AL 35809 Attn: Dr. R. G. Rhoades Dr. W. W. Wharton | 2 | HQ US Army Material Development
Readiness Command
Code DRCDE-DW
5011 Eisenhower Avenue
Room 8N42
Alexandria, VA 22333
Attn: Mr. S. R. Matos | . 1 | | Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22314
Attn: Dr. C. B. Henderson | 1 | Johns Hopkins University APL Chemical Propulsion Information Agency Johns Hopkins Road Laurel, MD 20810 Attn: Mr Theodore M. Gilliland | · . | | Ballistic Missile Defense Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807 Attn: Dr. David C. Sayles | 1 | Lawrence Livermore Laboratory
University of California
Livermore, CA 94550
Attn: Dr. M. Finger | 1 | | Ballistic Research Laboratory
USA ARRADCOM
DRDAR-BLP
Aberdeen Proving Ground, MD | 1 | Lawrence Livermore Laboratory
University of California
Livermore, CA 94550
Attn: Dr. R. McGuire | 1 | | 21005 Attn: Dr. A. W. Barrows Hercules Inc. Cumberland Aerospace Division Allegany Ballistics Lab P.O. Box 210 | 2 | Lockheed Missiles and Space Co.
P.O. Box 504
Sunnyvale, CA 94088
Attn: Dr. Jack Linsk
Org. 83-10 Bldg. 154 | 1 | | Cumberland, MD 21502
Attn: Dr. Rocco Musso | | | | | 72. • | | | | |---|------------|---|------------| | | No. Copies | | No. Copie: | | Lockheed Missile & Space Co.
3251 Hanover Street
Palo Alto, CA 94304
Attn: Dr. H. P. Marshall | 1 . | Naval Research Lab
Code 6100
Washington, DC 20375 | 1 | | Dept. 52-35 | 1 | Naval Sea Systems Command
Washington, DC 20362
Attn: Mr. G. Edwards, Code 62R3 | 1 | | Los Alamos Scientific Lab
P.O. Box 1663
Los Alamos, NM 87545
Attn: Dr. R. Rogers, WX-2 | • | Mr. J. Murrin, Code 62R2
Mr. W. Blaine, Code 62R | | | Los Alamos Scientific Lab
P.O. Box 1663
Los Alamos, NM 87545
Attn: Dr. B. Craig, M Division | 1 | Naval Sea Systems Command
Washington, DC 20362
Attn: Mr. R. Beauregard
SEA 64E | | | Naval Air Systems Command
Code 330
Washington, DC 20360
Attn: Mr. R. Heitkotter
Mr. R. Brown | 1 | Naval Surface Weapons Center
Code RII
White Oak, Silver Spring, MD
20910
Attn: Dr. H. G. Adolph | | | Naval Air Systems Command
Code 310
Washington, DC 20360
Attn: Dr. H. Mueller
Dr. H. Rosenwasser | 1 | Naval Surface Weapons Center
Code R13
White Oak, Silver Spring, MD
20910
Attn: Or. R. Bernecker | 1 | | Naval Explosive Ordnance
Disposal Facility
Indian Head, MD 20640
Attn: Lionel Dickinson
Code D | 1 | Naval Surface Weapons Center
Code R10
White Oak, Silver Spring, MD
20910
Attn: Dr. S. J. Jacobs | 1 | | Naval Ordnance Station
Code 5034
Indian Head, MD 20640
Attn: Mr. S. Mitchell | 1 | Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD
20910
Attn: Dr. M. J. Kamlet | 1 | | Naval Ordnance Station
Code PM4
Indian Head, MD 20640
Attn: Mr. C. L. Adams | 1 | Naval Surface Weapons Center
Code RO4
White Oak, Silver Spring, MD
20910 | 1 | | Dean of Research
Naval Postgraduate School
Monterey, CA 93940
Attn: Dr. William Tolles | 1 | Attn: Dr. D. J. Pastine Naval Surface Weapons Center Code R13 | 1 | | Naval Research Lab
Code 6510
Washington, DC 20375
Attn: Dr. J. Schnur | 1 | White Oak, Silver Spring, MD
20910
Attn: Dr. E. Zimet | | | | No. Copies | • | No. Copies | |---|------------|---|------------| | Naval Surface Weapons Center
Code R101
Indian Head, MD 20640
Attn: Mr. G. L. MacKenzie | 1 | Naval Weapons Center
Code 388
China Lake, CA 93555
Attn: D. R. Derr | 1 | | Naval Surface Weapons Center
Code R17
Indian Head, MD 20640
Attn: Dr. H. Haiss | . 1 | Naval Weapons Center
Code 388
China Lake, CA 93555
Attn: Dr. R. Reed Jr. | 1 | | Naval Surface Weapons Center
Code Rll
White Oak, Silver Spring, MD
20910 | 1 | Naval Weapons Center
Code 385
China Lake, CA 93555
Attn: Dr. A. Nielsen | 1 | | Attn: Dr. K. F. Mueller Naval Surface Weapons Center Code R16 Indian Head, MD 20640 Attn: Dr. T. D. Austin | 1 | Naval Weapons Center
Code 3858
China Lake, CA 93555
Attn: Mr. E. Martin | 1 | | Naval Surface Weapons Center
Code R122 | 1 | Naval Weapons Center
China Lake, CA 93555
Attn: Mr. R. McCarten | 1 | | White Oak, Silver Spring, MD 20910
Attn: Mr. L. Roslund | · | Naval Weapons Support Center
Code 5042
Crane, Indiana 47522 | 1 | | Naval Surface Weapons Center
Code R121
White Oak, Silver Spring, MD
20910
Attn: Mr. M. Stosz | 1 | Attn: Dr. B. Douda Rohm and Haas Company 723-A Arcadia Circle Hunsville, Alabama 35801 | 1 | | Naval Weapons Center
Code 3853
China Lake, CA 93555
Attn: Dr. R. Atkins | | Attn: Dr. H. Shuey Strategic Systems Project Office Dept. of the Navy Room 901 Washington, DC 20376 | 1 | | Naval Weapons Center
Code 3205
China Lake, CA 93555
Attn: Dr. L. Smith | 1 | Attn: Dr. J. F. Kincaid Strategic Systems Project Office Dept. of the Navy | 2 | | Naval Weapons Center
Code 3205
China Lake, CA 93555 | 1 | Room 1048 Washington, DC 20376 Attn: Mr. E. L. Throckmorton Mr. R. Kinert | | | Attn: Dr. C. Thelen Naval Weapons Center Code 385 China Lake, CA 93555 Attn: Dr. A. Amster | 1 | Thiokol Chemical Corp. Brigham
City
Wasatch Division
Brigham City, UT 84302
Attn: Dr. G. Thompson | 1 · | | <u> </u> | lo. Copies | <u>No</u> | . Copie | |---|------------|--|------------| | USA ARRADCOM
DRDAR-LCE
Dover, NJ 07801
Attn: Dr. R. F. Walker | 1 | Georgia Institute of Technology
Office of Research Administration
Atlanta, Georgia 30332
Attn: Professor Edward Price | 1 | | USA ARRADCOM DRDAR-LCE Dover, NJ 07801 Attn: Dr. N. Slagg | 1 | Univ. of Utah Dept. of Mech. & Industrial Engine MEB 3008 Salt Lake City, Utah 84112 Attn: Dr. Stephen Swanson | l
ering | | U.S. Army Research Office
Chemistry Division
P.O. Box 12211
Research Triangle Park, NC
27709 | 1 | Space Sciences, Inc.
135 Maple Avenue
Monrovia, CA 91016
Attn: Dr. M. Farber | 1 | | Institute of Polymer Science
University of Akron
Akron, OH 44325
Attn: Professor Alan N. Gent | 1 | Washington State University
Dept. of Physics
Pullman, WA 99163
Attn: Professor G.D. Duvall | 1 | | SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
Attn: Dr. Y.M. Gupta | 1 | Univ. of Maryland Department of Mechanical Eng. College Park, MD 20742 Attn: Professor R.W. Armstrong | 1 | | Graduate Aeronautical Lab. California Institute of Technolo Pasadena, CA 91125 Attn: Professor W.G. Knauss | l
ogy | The Catholic University of America
Physics Department
520 Michigan Ave., N.E.
Washington, D.C. 20017
Attn: Professor T. Litovitz | i 1 | | Pennsylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802
Attn: Professor Kenneth Kuo | 1 | Sandia Laboratories Division 2513 P.O. Box 5800 Albuquerque, N.M. 87185 Attn: Dr. S. Sheffield | 1 | | Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217
Attn: Dr. G. Neece Code 472
Thiokol Corp. Huntsville | 1 | IBM Research Lab.
K42.282
San Jose, CA 95193
Attn: Dr. Thor L. Smith | 1 | | Huntsville Div.
Huntsville, AL 35807
Attn: Mr. J.D. Byrd | | California Institute of Tech.
Dept. of Chemical Engineering
Pasadena, CA 91125
Attn: Professor N.W. Tschoegl | 1 | | Washington State University
Dept. of Physics
Pullman, WA 99163
Attn: Prof. T. Dickinson | 1 | Northwestern University Dept. of Civil Engineering Evanston, IL 60201 Attn: Professor J.D. Achenbach | ١ | | University of California Dept. of Chemistry 405 Hilgard Avenue Los Angeles, CA 90024 Attn: Prof. M.F. Nicol | 1 | Office of Naval Research Structural Mechanics Program Arlington, VA 22217 Attn: Dr. N.L. Basdekas, Code 47 | 1 | | | No. Copies | |--|----------------| | University of California
Berkeley, CA 94720
Attn: Prof. A.G. Evans | 1 | | Texas A&M Univ.
Dept. of Civil Engineering
College Station, TX 77843
Attn: Professor Richard A. Scl | l
napery | | SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025
Attn: Mr. M. Hill | 1 | | Los Alamos Scientífic Laborator
Los Alamos, NM 87545
Attn: Dr. J.M. Walsh | ry 1 | | Rockwell International
12214 Lakewood Blvd.
Downey, California 90241 | 1
Stop AB70 |